127,333 research outputs found

    MEMS flow sensors for nano-fluidic applications

    Get PDF
    This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heater’s temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended from the substrate to improve thermal isolation. The sensors have demonstrated a flow rate resolution below 10 nL/min, as well as the capability for detecting micro bubbles in the liquid. Heat transfer simulation has also been performed to explain the sensor operation and yielded good agreement with experimental data

    A new look at decomposition of turbulence forcing field and the structural response

    Get PDF
    Measured cross-spectrum of a turbulence field usually shows some decay in the statistical correlation in addition to convection at a characteristic velocity. It is shown that a decaying turbulence can be decomposed into frozen-pattern components thus permitting a simpler way to calculate the structural response. This procedure also provides a relationship whereby the measured input spectra can be incorporated. The theory is applied to an infinite beam which is backed on one side by a fluid filled cavity and is exposed on the other side by the turbulence excitation. The effect of the free stream velocity is also taken into consideration

    Vibroacoustic response of structures and perturbation Reynolds stress near structure-turbulence interface

    Get PDF
    The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface

    Subzone control method of stratum ventilation for thermal comfort improvement

    Get PDF
    The conventional control method of a collective ventilation (e.g., stratum ventilation) controls the averaged thermal environment in the occupied zone to satisfy the averaged thermal preference of a group of occupants. However, the averaged thermal environment in the occupied zone is not the same as the microclimates of the occupants, because the thermal environment in the occupied zone is not absolutely uniform. Moreover, the averaged thermal preference of the occupants could deviate from the individual thermal preferences, because the occupants could have different individual thermal preferences. This study proposes a subzone control method for stratum ventilation to improve thermal comfort. The proposed method divides the occupied zone into subzones, and controls the microclimates of the subzones to satisfy the thermal preferences of the respective subzones. Experiments in a stratum-ventilated classroom are conducted to model and validate the Predicted Mean Votes (PMVs) of the subzones, with a mean absolute error between 0.05 scale and 0.14 scale. Using the PMV models, the supply air parameters are optimized to minimize the deviation between the PMVs of the subzones and the respective thermal preferences. Case studies show that the proposed method can fulfill the thermal constraints of all subzones for thermal comfort, while the conventional method fails. The proposed method further improves thermal comfort by reducing the deviation of the achieved PMVs of subzones from the preferred ones by 17.6%–41.5% as compared with the conventional method. The proposed method is also promising for other collective ventilations (e.g., mixing ventilation and displacement ventilation)
    • …
    corecore